首页> 外文OA文献 >Coupled Mode Equations and Gap Solitons for the 2D Gross-Pitaevskii equation with a non-separable periodic potential
【2h】

Coupled Mode Equations and Gap Solitons for the 2D Gross-Pitaevskii equation with a non-separable periodic potential

机译:耦合模式方程和2D Gross-pitaevskii的间隙孤子   具有不可分离的周期性势的方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gap solitons near a band edge of a spatially periodic nonlinear PDE can beformally approximated by solutions of Coupled Mode Equations (CMEs). Here westudy this approximation for the case of the 2D Periodic NonlinearSchr\"{o}dinger / Gross-Pitaevskii Equation with a non-separable potential offinite contrast. We show that unlike in the case of separable potentials [T.Dohnal, D. Pelinovsky, and G. Schneider, J. Nonlin. Sci. {\bf 19}, 95--131(2009)] the CME derivation has to be carried out in Bloch rather than physicalcoordinates. Using the Lyapunov-Schmidt reduction we then give a rigorousjustification of the CMEs as an asymptotic model for reversible non-degenerategap solitons and even potentials and provide $H^s$ estimates for thisapproximation. The results are confirmed by numerical examples including somenew families of CMEs and gap solitons absent for separable potentials.
机译:可以通过耦合模式方程(CME)的形式来近似逼近空间周期性非线性PDE的带边附近的间隙孤子。在此,我们对具有有限可分势的不可分离势的二维周期非线性linearschr \“ {o} dinger / Gross-Pitaevskii方程的情况进行了近似计算。我们证明了在可分离势情况下[T.Dohnal,D. Pelinovsky ,and G. Schneider,J. Nonlin。Sci。{\ bf 19},95--131(2009)],CME推导必须在Bloch而不是物理坐标中进行,然后使用Lyapunov-Schmidt约简CME作为可逆非简并带隙孤子甚至势的渐近模型的严格调整,并为此近似值提供了$ H ^ s $的估计值,数值例子包括一些新的CME和不存在可分离势的间隙孤子的例子证实了这一结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号